6 research outputs found

    The Solvation Energy of Ions in a Stockmayer Fluid

    Get PDF
    The solvation of ions in polar solvents has been a long studied system since the early twentieth century. A common technique to calculate the energy associated with ion solvation is the Born Solvation energy equation. This equation assumes an ion is placed in an incompressible, homogeneous dielectric, which is not necessarily representative of a real system. In this work the Stockmayer Fluid Model is used in a molecular dynamics simulation through the software LAMMPS to check the quantitative correctness of the Born equation. It is also shown how solvation energies of ions placed in polymerized and non-polymerized solvents differ. It is shown that solvation energies in non-polymerized solvents are less negative than the predicted Born Solvation energy due to dielectric saturation effects, but are qualitatively similar. Solvation energies of polymerized solvents differ greatly from non-polymerized solvents and the predicted Born Solvation Energy. The reason for this is speculated to be due to compressibility of the solvents or structural and dipolar effects from polymer chains. It is also shown that the Stockmayer Fluid Model can be used to accurately predict experimental results for non-polymeric solvents

    The 13th Southern Hemisphere Conference on the Teaching and Learning of Undergraduate Mathematics and Statistics

    Get PDF
    Ngā mihi aroha ki ngā tangata katoa and warm greetings to you all. Welcome to Herenga Delta 2021, the Thirteenth Southern Hemisphere Conference on the Teaching and Learning of Undergraduate Mathematics and Statistics. It has been ten years since the Volcanic Delta Conference in Rotorua, and we are excited to have the Delta community return to Aotearoa New Zealand, if not in person, then by virtual means. Although the limits imposed by the pandemic mean that most of this year’s 2021 participants are unable to set foot in Tāmaki Makaurau Auckland, this has certainly not stopped interest in this event. Participants have been invited to draw on the concept of herenga, in Te Reo Māori usually a mooring place where people from afar come to share their knowledge and experiences. Although many of the participants are still some distance away, the submissions that have been sent in will continue to stimulate discussion on mathematics and statistics undergraduate education in the Delta tradition. The conference invited papers, abstracts and posters, working within the initial themes of Values and Variables. The range of submissions is diverse, and will provide participants with many opportunities to engage, discuss, and network with colleagues across the Delta community. The publications for this thirteenth Delta Conference include publications in the International Journal of Mathematical Education in Science and Technology, iJMEST, (available at https://www.tandfonline.com/journals/tmes20/collections/Herenga-Delta-2021), the Conference Proceedings, and the Programme (which has created some interesting challenges around time-zones), by the Local Organizing Committee. Papers in the iJMEST issue and the Proceedings were peer reviewed by at least two reviewers per paper. Of the ten submissions to the Proceedings, three were accepted. We are pleased to now be at the business end of the conference and hope that this event will carry on the special atmosphere of the many Deltas which have preceded this one. We hope that you will enjoy this conference, the virtual and social experiences that accompany it, and take the opportunity to contribute to further enhancing mathematics and statistics undergraduate education. Ngā manaakitanga, Phil Kane (The University of Auckland | Waipapa Taumata Rau) on behalf of the Local Organising Committ

    Orientation-dependent mechanical response of graphene/BN hybrid nanostructures

    No full text
    Graphene-based hybrid van der Waals structures have emerged as a new class of materials for novel multifunctional applications. In such a vertically-stacked heterostructure, it is expected that its mechanical strength can be tailored by the orientation of the constituent monolayers relative to each other. In this paper, we explore this hypothesis by investigating the orientation dependence of the mechanical properties of graphene/h-BN heterostructures together with that of graphene and h-BN bilayers. The calculated results simulating the pull-out experiment show a noticeable dependence of the (out-of-plane) transverse mechanical response, which is primarily governed by the interlayer strength, on the stacking configurations. The degree of the dependence is directly related to the nature of the interlayer interactions, which change from covalent to covalent polar in going from graphene bilayer to graphene/BN to BN bilayer. In contrast, molecular dynamics simulations mimicking nanoindentation experiments predict that the in-plane mechanical response, which mainly depends on the intra-layer interactions, shows little or no dependence on the stacking-order. The BN monolayer is predicted to fracture before graphene regardless of the stacking pattern or configuration in the graphene/BN heterostructure, affirming the mechanical robustness of graphene. Thus, the graphene-based hybrid structures retain both stiffness and toughness required for a wide range of optoelectromechanical applications

    Molecular dynamics simulations of the dielectric constants of salt-free and salt-doped polar solvents

    No full text
    We develop a Stockmayer fluid model that accounts for the dielectric responses of polar solvents (water, MeOH, EtOH, acetone, 1-propanol, DMSO, and DMF) and NaCl solutions. These solvent molecules are represented by Lennard-Jones (LJ) spheres with permanent dipole moments and the ions by charged LJ spheres. The simulated dielectric constants of these liquids are comparable to experimental values, including the substantial decrease in the dielectric constant of water upon the addition of NaCl. Moreover, the simulations predict an increase in the dielectric constant when considering the influence of ion translations in addition to the orientation of permanent dipoles

    Cancer biotherapy: 2003 disease-related activity

    No full text
    corecore